(2)电磁水表的高测量流速可达15m/s,通常电磁水表的流量点Q3选在12.5~13.5m/s流速上。电磁水表的量程范围参照冷水水表标准,是一种强制执行的标准。众所周知,冷水水表的流量范围可由Q1(小流量)、Q2(分界流量)、Q3(常用流量)、Q4(大流量)来表述,一般情况下,其流量计量特性可由量程比Q3/Q1(R值),Q4/Q3=1.25,Q2/Q1=1.6来反映。目前跨国先进厂商的电磁水表,其Q3/Q1可达400。如西门子Ⅱ级DN100电磁水表,Q3=250m3/h(流速为13.48m/s),Q4=312.5m3/h(流速为16.85m/s),Q3/Q1=400,R2/Q1=1.6,Q2=1.0m3/h,Q1=0.63m3/h。电磁水表没有“量程迁移”的概念,它的计量范围在始动流量QS至大流量Q4之间,选用电磁水表的口径,主要应考虑满足经济流速。
(2)电磁水表使用内装的锂电池供电,降低功耗、延长工作寿命是其设计任务的关键,因而只能采用较低的励磁电流(通常它的励磁电流仅为电磁流量计的1/10,甚至更低),这样传感器的有效输出信号幅值就很微弱。电磁水表研发人员通常用两种方法来增强信号:一是提高信号的放大倍数;二是将测量段缩径,人为提高介质流速,这将大幅提升流量信号。因此,电磁水表的测量腔体几乎都采用缩径工艺,一般缩径为原标称口径的70%~80%,缩径率以不显著影响仪表的压损并且不显著改变流场的稳定为原则。
电磁水表的缩径工艺加大了制造难度,增大了压力损失,太大的缩径也会扰乱流场的稳定,因此制造商要综合考虑缩径和流场稳定对计量的影响。
电磁水表的采样速率比较慢,信号又很微弱,这样计算处理需要的稳定时间比较长,这也需要远比电磁流量计更稳定的流速,考虑到缩径的因素,一般电磁水表的前后直管段选择要比电磁流量计严格。为保证计量精度,电磁水表通常需要前10D和后5D的直管段。
在测量污水、浆液等介质时,电磁流量计的衬里内壁以及电极表面容易产生结垢现象,由于结垢部分的电导率与测量介质不一致,产生结垢后,如果不及时清理,轻则给电磁流量计的测量带来误差,重则导致电磁流量计的信号短路或断路,导致仪表无法正常工作。对于易结垢场合使用的电磁流量计,日前普遍采用式电极的方法解决,然而式电极也有其明显的缺点一对安装环境要求较高、需要定期维护、不能用于高压管道等。本文通过对测量导管的结构以及测量电极的形状做改进设计,极大地延长了在高压等场合条件下电磁流量计的无维护使用寿命。使此类工况的流量测量得到较为理想的解决。本次研究涉及到流量测量技术相关领域,包括有电磁流量计以及电极的阻垢结构,该结构中的电极主要是与流体介质之间进行接触的安装部分以及液体接触部分,而在液体的接触部位轴线位置处,其中心位置具有同轴设置的凸起部分,此凸起部分为导电体,本次所设计的电磁流量计其电极表面具有不易结垢以及无需经常进行清洗的特点。
您好,欢迎莅临k8凯发,欢迎咨询...
触屏版二维码 |